test tags

test description

Level: Others
Certification course: Yes
What you'll learn:

  • Lorem ipsum dolor sit amet consectetur. Venenatis tristique mattis blandit morbi faucibus sapien lectus scelerisque. Platea eu tincidunt nibh habitasse. Sed nibh euismod feugiat mattis hac vel.
  • Lorem ipsum dolor sit amet consectetur. Venenatis tristique mattis blandit morbi faucibus sapien lectus scelerisque. Platea eu tincidunt nibh habitasse. Sed nibh euismod feugiat mattis hac vel.
  • Lorem ipsum dolor sit amet consectetur. Venenatis tristique mattis blandit morbi faucibus sapien lectus scelerisque. Platea eu tincidunt nibh habitasse. Sed nibh euismod feugiat mattis hac vel.
  • Lorem ipsum dolor sit amet consectetur. Venenatis tristique mattis blandit morbi faucibus sapien lectus scelerisque. Platea eu tincidunt nibh habitasse. Sed nibh euismod feugiat mattis hac vel.

Prerequisites:

No prior knowledge needed

Full description:

In this first tier of our MOOC on Machine Learning (ML) in Weather and Climate, we give a broad overview of the key concepts ML and its applications in recent years to topics from forecasting and data assimilation to post-processing, observations and computing. This course is aimed as an introduction, which is accessible to those with an interest in ML, weather and climate, but without necessarily requiring a very technical background. This course features a mixture of interactive modules, webinar recordings, quizzes, podcasts and code examples. Please note that this course ran live in early 2023 and reflected the state of the art at that point in time.

Lorem urna mauris quam quis netus. Ac lacus consectetur sapien pellentesque sed massa eget nec rhoncus. Commodo a proin augue mi tempor lorem cursus. Sem porttitor facilisis fermentum dignissim. Semper purus blandit neque pharetra aliquam commodo lectus aliquet. Vitae euismod mus est nulla feugiat curabitur.

At commodo erat eget sit augue nulla. Urna quis imperdiet curabitur aliquet facilisis. Est nibh consequat pellentesque vitae etiam pharetra.

Estimated duration: 12hr 30min
Hide last updated info: No
Hide number of enrollments: No
Hide full description label: No
Data applications: Yes
Numerical weather prediction: No
Computing services and tools: No
Forecasting: Yes
Machine learning: Yes
Atmospheric composition: No